62 research outputs found

    Unveiling metamorphism by abstract interpretation of code properties

    Get PDF
    Metamorphic code includes self-modifying semantics-preserving transformations to exploit code diversification. The impact of metamorphism is growing in security and code protection technologies, both for preventing malicious host attacks, e.g., in software diversification for IP and integrity protection, and in malicious software attacks, e.g., in metamorphic malware self-modifying their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extracting metamorphic signatures from metamorphic code. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics. In particular, we introduce the notion of regular metamorphism, where the invariants of the phase semantics can be modeled as finite state automata representing the code structure of all possible metamorphic change of a metamorphic code, and we provide a static signature extraction algorithm for metamorphic code where metamorphic signatures are approximated in regular metamorphism

    Inferring Energy Bounds via Static Program Analysis and Evolutionary Modeling of Basic Blocks

    Full text link
    The ever increasing number and complexity of energy-bound devices (such as the ones used in Internet of Things applications, smart phones, and mission critical systems) pose an important challenge on techniques to optimize their energy consumption and to verify that they will perform their function within the available energy budget. In this work we address this challenge from the software point of view and propose a novel parametric approach to estimating tight bounds on the energy consumed by program executions that are practical for their application to energy verification and optimization. Our approach divides a program into basic (branchless) blocks and estimates the maximal and minimal energy consumption for each block using an evolutionary algorithm. Then it combines the obtained values according to the program control flow, using static analysis, to infer functions that give both upper and lower bounds on the energy consumption of the whole program and its procedures as functions on input data sizes. We have tested our approach on (C-like) embedded programs running on the XMOS hardware platform. However, our method is general enough to be applied to other microprocessor architectures and programming languages. The bounds obtained by our prototype implementation can be tight while remaining on the safe side of budgets in practice, as shown by our experimental evaluation.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854). Improved version of the one presented at the HIP3ES 2016 workshop (v1): more experimental results (added benchmark to Table 1, added figure for new benchmark, added Table 3), improved Fig. 1, added Fig.

    CFA2: a Context-Free Approach to Control-Flow Analysis

    Full text link
    In a functional language, the dominant control-flow mechanism is function call and return. Most higher-order flow analyses, including k-CFA, do not handle call and return well: they remember only a bounded number of pending calls because they approximate programs with control-flow graphs. Call/return mismatch introduces precision-degrading spurious control-flow paths and increases the analysis time. We describe CFA2, the first flow analysis with precise call/return matching in the presence of higher-order functions and tail calls. We formulate CFA2 as an abstract interpretation of programs in continuation-passing style and describe a sound and complete summarization algorithm for our abstract semantics. A preliminary evaluation shows that CFA2 gives more accurate data-flow information than 0CFA and 1CFA.Comment: LMCS 7 (2:3) 201

    Automatic parallelization of irregular and pointer-based computations: perspectives from logic and constraint programming

    Get PDF
    Irregular computations pose some of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. In the past decade there has been significant progress in the development of parallelizing compilers for logic programming and, more recently, constraint programming. The typical applications of these paradigms frequently involve irregular computations, which arguably makes the techniques used in these compilers potentially interesting. In this paper we introduce in a tutorial way some of the problems faced by parallelizing compilers for logic and constraint programs. These include the need for inter-procedural pointer aliasing analysis for independence detection and having to manage speculative and irregular computations through task granularity control and dynamic task allocation. We also provide pointers to some of the progress made in these áreas. In the associated talk we demónstrate representatives of several generations of these parallelizing compilers

    Flow analysis of dynamic logic programs

    No full text
    Abstract: Research on flow analysis and optimization of logic programs typically assumes that the pro-grams being analyzed are static, i.e. any code that can be executed at runtime is available for analysis at compile time. This assumption may not hold for ‘‘real’ ’ programs, which can contain dynamic goals of the form call(X), where X is a variable at compile time, or where predicates may be modified via features like assert and retract. In such contexts, a compiler must be able to take the effects of such dynamic con-structs into account in order to perform nontrivial flow analyses that can be guaranteed to be sound. This paper outlines how this may be done for certain kinds of dynamic programs. Our techniques allow analysis and optimization techniques that have been developed for static programs to be extended to a large class of ‘‘well-behaved’ ’ dynamic programs. Address for correspondence and proofs

    QD-Janus: A Sequential Implementation of Janus in Prolog

    No full text
    Janus is a language designed for distributed constraint programming. This paper describes QDJanus, a sequential implementation of Janus in Prolog. The compiler uses a number of novel analyses and optimizations to improve the performance of the system. The choice of Prolog as the target language for a compiler, while unusual, is motivated by the following: (i) the semantic gap between Janus and Prolog is much smaller than that between Janus and, say, C or machine language---this simplifies the compilation process significantly, and makes it possible to develop a system with reasonable performance fairly quickly; (ii) recent progress in Prolog implementation techniques, and the development of Prolog systems whose speeds are comparable to those of imperative languages, indicates that the translation to Prolog need not entail a significant performance loss compared to native code compilers; and (iii) compilation to Prolog can benefit immediately from a significant body of work on, and impl..
    corecore